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Abstract

This paper presents an improved, model–independent and
particularly robust RF characterization and parameter ex-
traction approach based on multi–bias S–parameters. With
a new hybrid evolutionary / conjugate gradient strategy,
consistent and largely start value–independent results are
obtained. Devices from various MMIC foundries are used
to demonstrate the quality of this approach.

Introduction

For the time– and cost–optimized development of mi-
crowave ICs, accurate modeling of the relevant active
devices like MESFETs and HEMTs is essential. Multi–
bias S–parameters are usually taken as the basis for deriv-
ing suitable bias–dependent small–signal RF models and,
subsequently, full dynamic (large–signal) models in com-
pact design–oriented form. However, the set of paramet-
ers of even sufficiently good small signal models – typic-
ally obtained by fitting (optimization) processes – may be
start–value dependent and physically not consistent over
the range of bias situations considered [1]. A helpful step
to overcome part of this problem is to generate simplified
models from additional DC and pinch–off measurements,
for example to extract parasitic, peripheral model paramet-
ers first, before then deriving the intrinsic device paramet-
ers [2]–[4]. But, the necessary assumptions needed to do
this can also be the cause of severe consistency errors [5]
and the additional measured data are often not available
from manufacturers.
Higher modeling consistency and efficiency is achieved
by a combination of optimization and analytical extraction
which considerably reduces the number of fitting paramet-
ers in the extraction procedure [5], [6]. Here, the intrinsic
device parameters are computed analytically for each bias
situation as a function of the peripheral, parasitic elements
which are treated as global (bias–independent) data in the
associated fitting process. This reduces the start–value de-

pendency of the results along with reducing the number of
optimization variables but does not generally eliminate it
[7], [8]. Our experience shows, for example, that the out-
lined procedure still may yield negative (unphysical) val-
ues for the intrinsic series resistances Ri and Rgd in typ-
ical MESFET / HEMT models. This implies that further
improvement of robustness and consistency is needed.
Building on referenced previous work [5],[6], we describe
such improvements with a view towards robust, efficient
and generalized device model parameter computation for
MIC / MMIC design. The chosen small–signal equivalent
circuit topology is sufficiently general to cover simultan-
eously the wide–spread models [9]-[12] by Materka, An-
gelov, Curtice, McCament (SPICE) and others, thus mak-
ing the approach to a large extent model–independent. A
common feature of the named models, also adopted here,
is the approximation of bias–independent intrinsic para-
meters � , Rgd, Ri and Cds which does not compromise
device model quality as our investigations have revealed
for a range of devices. On the other hand, our approach
yields and visualizes all other intrinsic model parameters
as voltage dependent quantities which can then be repres-
ented by published nonlinear equations as in [9]–[12] or
by user defined resp. process–specific proprietary equa-
tions. All global parameters (bias–independent elements)
are determined by a new hybrid optimization technique,
merging the advantages of an evolutionary algorithm [13]
with that of a conjugate gradient optimizer [14] which has
been found to be a key feature for robustness resp. start–
value independence. The evolutionary portion eliminates
to a high extent the local minimum problem, while the con-
jugate gradient optimizer boosts the efficiency of the evol-
utionary algorithm. The intrinsic bias–dependent elements
are derived individually for each bias–specific data set by
analytical equations. It will be demonstrated for devices
from various MMIC foundries that this provides results ef-
ficiently, accurately, physically consistent for a large oper-
ating range and widely independent from model parameter
start values.
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Fig. 1: a) Small signal equivalent circuit covering a range
of common models b) Equivalent circuit with �–structure
for the intrinsic part

Analytical derivation of bias–dependent
model parameters

As outlined already, the equivalent circuit shown in Fig. 1a
is well suited to accurately describe MESFETs and HEMTs
at microwave and millimeterwave frequencies [10], [16].
The general structure of the intrinsic portion is a �–
network as visualized in Fig. 1b with admittances, that can
be computed efficiently in each step of a multi–bias fit-
ting process as a functionof the global, peripheral elements
(optimization parameters). For each bias situation, the ele-
ments of Fig. 1b are computed as follows from the two–
port admittance parameters Yij of the full equivalent cir-
cuit:
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The intrinsic bias dependent elements are derived by suitable
summation over all (l = 1; 2; : : : L) measurement frequencies
!l individually for each bias point:
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With the inverse frequency terms contained in Rds and Gm an
increased weighting of low frequency contributions is achieved.

Hybrid Optimization Approach

Fig. 2 shows the flow diagram of the new hybrid optimization
strategy, developed and applied here. As it is characteristic for
evolutionary optimization, the process starts with a population
of start parameter vectors (individuals) which is improved un-
til suitable termination criteria are satisfied. Each individual is a
set of normalized parameters representing the optimization vari-
ables. A random initialization generates the components of each
individual as evenly distributed random numbers in the interval
[Xmin, Xmax]. In the tests described here this interval covers the
large range of 0:1�XA : : : 10�XA of physically relevant estimates
XA.
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Fig. 2: Flow diagram of the hybrid optimizer

In contrast to a pure evolutionary algorithm, the hybrid optim-
izer of Fig. 2 uses a conjugate gradient portion [14] in addition.
This is used to locally improve each individual with the avail-
able gradient information in the n–dimensional parameter space
towards obtaining a local best value. Similar as in Ref. [14] it is
enforced by a suitable mapping function (normalization), that the
interval of 0:1 �XA : : : 10 �XA is not left:
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Under application of the error function Err for N bias points,
with
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a selection is then made of the better half of the local minima (par-
ents of the next generation) and used to generate 2 new norm–
individuals each by linear and quadratic averaging of the com-
ponents of the parent vectors, respectively. Once the residual er-
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rors associatedwith the norm–individuals do not deviate substan-
tially anymore from that of the best individual, a flat and well be-
haved shape of the error function in the parameter space has been
obtained. More iterations do then not provide a further reduction
of the error minimum, as was verified by extensive tests using
random initialization. For this reason, the strategy of Fig. 2 uses
as a termination criterion the deviation of the residual errors of
the norm–individuals from the best fitting result obtained. If the
termination criterion is not satisfied, randomly chosen individuals
are used to generate new individuals.

Results

For reasons of limited space in this summary, we give only one
example here for the quality, accuracy and efficiency of the de-
veloped parameter extraction approach. The device considered is
a HEMT of the GEC Marconi (GMMT) Foundry, Caswell, UK,
described by multi–bias S–parameters over 1 � 40GHz. Sim-
ilar high quality results have been obtained for devices of other
foundries and shown in the presentation.
Table. 1 shows the parameter values and associated % standard
deviations as obtained from 100 different random initializations.
For a few peripheral, parasitic elements of very small numerical
value a standard deviation of 15–30 % is completely acceptable.
Standard deviations obtained in the order of 1% for parasitic in-
ductances and for nearly all of the intrinsic parameters are excel-
lent. They confirm, that the results obtained are largely independ-
ent of the randomly initiated start values.
Also, the generatedparasitic values give good agreementbetween
measured and computed S–parameters, even for a simplified
Cold–Model with V ds = 0, though the obtained resistance
values are on the low side compared to physical consideration
as is the case in [5]–[7]. Naturally, the best fit between com-
puted and measured data using a non–rigorous model comprom-
ising for design speed can not be completely in line with the true
physical parasitic values [7], [15]. Moreover, the characterist-
ics of bias dependent elements Cgs, Cgd, Gds, Gm, as shown
in Figs. 3–4, demonstrate physically consistent behaviour for the
whole range of bias situations considered, see [10], [17] for com-
parison. Finally, the residual error distribution of Fig. 5 and the
S–parameters for 6 different bias situations in Fig. 6 demonstrate
the excellent agreement between measured and computed data
over the full frequency range of 1 � 40GHz. The average re-
sidual error taken over all 160 bias points and the full frequency
range is only 2.46%, see Fig. 5.

Conclusion

This contribution describes progress with respect to accurate, ro-
bust and consistent intrinsic device RF characterization and para-
meter extraction in a generalized form applicable to a wide range
of MESFET / HEMT models used in industry design applic-
ations. The approach presented is based on a mixture of fit-
ting and analytical parameter extraction, yielding and visualizing
the voltage dependent intrinsic parameters in model–independent
form. A key feature in this approach is a hybrid optimizer, which
for a wide range of situations and devices has been tested to
provide largely start value–independent results. The approach
and the quality of results obtained contributes to further improv-

ing design–oriented large signal modeling and associated MMIC
design quality.
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[13] T. Bäck, U. Hammel, and H. P. Schwefel, IEEE Trans.
Evolu. Comp., vol. 1, pp. 3–17, Apr. 1997.

[14] R. H. Jansen et al., LINMIC+/N CAD Package, vrs. 4.1,
Jansen Microwave, Aachen, Germany, May 1997.

[15] R. Anholt, in Proc. IEEE MTT–S Workshop on Experiment-
ally based FET Device Modelling & Related Nonlinear Cir-
cuit Design, Univ. Kassel, Germany, pp. 5.1–8, July 1997.

[16] M. Berroth and R. Bosch, IEEE Trans. Microwave Theory
Tech., vol. MTT–39, pp. 224–229, Feb. 1991.

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



[17] U. Schaper and A. Werthof, in Proc. IEEE MTT–S Work-
shop on Experimentally based FET Device Modelling &
Related Nonlinear Circuit Design, Univ. Kassel, Germany,
pp. 26.1–5, July 1997.

Parasitics Average % Std. Dev.
Cpg[fF ] 5.16 15.48
Cpd[fF ] 0.03 28.76
Rs[
] 1.46 3.64
Rg[
] 0.22 28.38
Rd[
] 0.20 0.57
Ls[pH] 18.30 0.98
Lg[pH] 17.90 1.31
Ld[pH] 16.87 1.44
Intrinsics Average % Std. Dev.
Ri[
] 4.45 3.62
Rgd[
] 15.51 0.93
� [ps] 0.89 1.02

Cds[fF ] 23.07 0.11
Cgs[fF ] 83.54 1.00
Cgd[fF ] 19.60 0.13
Gm[mS] 23.64 0.21
Rds[k
] 5.65 2.12

Tab. 1: Average values and standard deviations obtained
from 100 random initialisations chosen in the

range of 0:1 �XA : : : 10 �XA.
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