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Abstract

This paper presents an improved, model—i ndependent and
particularly robust RF characterization and parameter ex-
traction approach based on multi—bias S—parameters. With
a new hybrid evolutionary / conjugate gradient strategy,
consistent and largely start value-independent results are
obtained. Devices from variousMMIC foundries are used
to demonstrate the quality of this approach.

Introduction

For the time— and cost—optimized development of mi-
crowave ICs, accurate modeling of the relevant active
devices like MESFETs and HEMTs is essential. Multi—
bias S—parameters are usually taken as the basis for deriv-
ing suitable bias—dependent small-signal RF models and,
subsequently, full dynamic (large-signal) models in com-
pact design—oriented form. However, the set of paramet-
ers of even sufficiently good small signal models — typic-
ally obtained by fitting (optimization) processes — may be
start—value dependent and physically not consistent over
the range of bias situations considered [1]. A helpful step
to overcome part of thisproblem isto generate simplified
models from additional DC and pinch—off measurements,
for exampleto extract parasitic, peripheral model paramet-
ersfirgt, before then deriving the intrinsic device paramet-
ers [2]{4]. But, the necessary assumptions needed to do
this can aso be the cause of severe consistency errors [5]
and the additional measured data are often not available
from manufacturers.

Higher modeling consistency and efficiency is achieved
by acombination of optimization and analytical extraction
which considerably reduces the number of fitting paramet-
ersin the extraction procedure[5], [6]. Here, theintrinsic
device parameters are computed analytically for each bias
situation as afunction of the peripheral, parasitic elements
which are treated as global (bias—independent) datain the
associated fitting process. This reduces the start—vaue de-

pendency of the results a ong with reducing the number of
optimization variables but does not generally eliminate it
[7], [8]. Our experience shows, for example, that the out-
lined procedure still may yield negative (unphysical) val-
ues for the intrinsic series resistances R: and Rgd in typ-
ical MESFET / HEMT models. Thisimpliesthat further
improvement of robustness and consistency is needed.
Building on referenced previouswork [5],[6], we describe
such improvements with a view towards robugt, efficient
and generalized device model parameter computation for
MIC/ MMIC design. The chosen small-signal equivalent
circuit topology is sufficiently general to cover simultan-
eously the wide-spread models [9]-[12] by Materka, An-
gelov, Curtice, McCament (SPICE) and others, thus mak-
ing the approach to a large extent model—independent. A
common feature of the named models, also adopted here,
is the approximation of bias-independent intrinsic para-
meters 7, Rgd, Ri and Cds which does not compromise
device model quality as our investigations have revealed
for arange of devices. On the other hand, our approach
yields and visualizes all other intrinsic model parameters
as voltage dependent quantities which can then be repres-
ented by published nonlinear equations as in [9]-{12] or
by user defined resp. process—specific proprietary equa-
tions. All global parameters (bias-independent e ements)
are determined by a new hybrid optimization technique,
merging the advantages of an evolutionary algorithm [13]
with that of a conjugate gradient optimizer [14] which has
been found to be a key feature for robustness resp. start—
value independence. The evolutionary portion eliminates
toahigh extent thelocal minimum problem, whilethe con-
jugate gradient optimizer boosts the efficiency of the evol-
utionary algorithm. Theintrinsi c bias—dependent el ements
are derived individualy for each bias—specific data set by
analytical equations. It will be demonstrated for devices
fromvariousMMIC foundriesthat thisprovidesresultsef-
ficiently, accurately, physically consistent for alarge oper-
ating range and widely independent from model parameter
start values.
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Fig. 1: a) Small signal equivalent circuit covering arange
of common models b) Equivalent circuit with 7—structure
for theintrinsic part

Analytical derivation of bias—dependent
model parameters

Asoutlined already, theequivalent circuit showninFig. 1a
iswell suited to accurately describe MESFETsand HEM Ts
at microwave and millimeterwave frequencies [10], [16].
The general structure of the intrinsic portion is a m—
network as visualized in Fig. 1b with admittances, that can
be computed efficiently in each step of a multi—bias fit-
ting process asafunction of theglobal, peripheral el ements
(optimization parameters). For each bias situation, theele-
ments of Fig. 1b are computed as follows from the two—
port admittance parameters Y;; of the full equivalent cir-
cuit:

Yom=1% (Y21 — Y12) Ygszé (Y/) + Yiz — ZaAY")

Yoo =5 (Vi + ZAY')  Yae=L5 (Vi + Y5 — Z,0Y")

D D

where:
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The intrinsic bias dependent elements are derived by suitable
summation over all (I = 1,2,...L) measurement frequencies
wy individually for each bias point:
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With the inverse frequency terms contained in Rq4. and G, an
increased weighting of low frequency contributionsis achieved.

Hybrid Optimization Approach

Fig. 2 shows the flow diagram of the new hybrid optimization
strategy, developed and applied here. Asit is characteristic for
evolutionary optimization, the process starts with a population
of start parameter vectors (individuals) which is improved un-
til suitable termination criteria are satisfied. Each individual is a
set of normalized parameters representing the optimization vari-
ables. A randomiinitialization generatesthe components of each
individual as evenly distributed random numbers in the interval
[Xmin, Xmax]. In thetests described herethisinterval coversthe
largerangeof 0.1- X 4 ... 10- X 4 of physically relevant estimates
Xa.
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Fig. 2: Flow diagram of the hybrid optimizer

Create new generation by

In contrast to a pure evolutionary agorithm, the hybrid optim-
izer of Fig. 2 uses a conjugate gradient portion [14] in addition.
This is used to locally improve each individual with the avail-
able gradient information in the n—dimensional parameter space
towards obtaining alocal best value. Similar asin Ref. [14] it is
enforced by asuitable mapping function (normalization), that the
interval of 0.1 - X a4 ...10- X 4 isnot left:

XB 2[1 + tanh (% _|_X0)] (M) X
with
Xo =arctan (M) )

Xmaz—Xmin
Under application of the error function Err for N bias points,
with

aselectionisthen madeof the better half of thelocal minima (par-
ents of the next generation) and used to generate 2 new norm—
individuals each by linear and quadratic averaging of the com-
ponents of the parent vectors, respectively. Oncethe residual er-
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rors associatedwith the norm—individual sdo not deviate substan-
tially anymore from that of the best individual, aflat and well be-
haved shape of the error function in the parameter space hasbeen
obtained. More iterations do then not provide afurther reduction
of the error minimum, as was verified by extensive tests using
random initialization. For this reason, the strategy of Fig. 2 uses
as a termination criterion the deviation of the residual errors of
the norm—individuals from the best fitting result obtained. If the
termination criterion is not satisfied, randomly chosenindividuals
are used to generate new individuals.

Reaults

For reasons of limited space in this summary, we give only one
example here for the quality, accuracy and efficiency of the de-
veloped parameter extraction approach. Thedevice consideredis
aHEMT of the GEC Marconi (GMMT) Foundry, Caswell, UK,
described by multi—bias S—parametersover 1 — 40GHz. Sim-
ilar high quality results have been obtained for devices of other
foundries and shown in the presentation.

Table. 1 showsthe parameter values and associated % standard
deviations as obtained from 100 different random initializations.
For a few peripheral, parasitic elements of very small numerical
value a standard deviation of 15-30 % is completely acceptable.
Standard deviations obtained in the order of 1% for parasitic in-
ductancesand for nearly all of theintrinsic parameters are excel-
lent. They confirm, that the results obtained arelargely independ-
ent of the randomly initiated start values.

Also, the generated parasitic valuesgivegood agreement between
measured and computed S-parameters, even for a simplified
Cold-Model with Vids = 0, though the obtained resistance
values are on the low side compared to physical consideration
asis the case in [5]-{7]. Naturally, the best fit between com-
puted and measured data using a non—rigorous model comprom-
ising for design speed can not be completely in line with the true
physical parasitic values [7], [15]. Moreover, the characterist-
ics of bias dependent elements Cgs, Cgd, Gds, Gm, as shown
in Figs. 34, demonstrate physically consistent behaviour for the
whole range of biassituations considered, see[10], [17] for com-
parison. Finally, the residual error distribution of Fig. 5 and the
S—parametersfor 6 different biassituationsin Fig. 6 demonstrate
the excellent agreement between measured and computed data
over the full frequency range of 1 — 40G Hz. The average re-
sidual error taken over all 160 bias points and the full frequency
rangeis only 2.46%, see Fig. 5.

Conclusion

This contribution describesprogresswith respect to accurate, ro-
bust and consistent intrinsic device RF characterization and para-
meter extraction in ageneralized form applicableto awiderange
of MESFET / HEMT models used in industry design applic-
ations. The approach presented is based on a mixture of fit-
ting and analytical parameter extraction, yielding and visualizing
the voltage dependentintrinsic parametersin model—independent
form. A key featurein this approachis a hybrid optimizer, which
for a wide range of situations and devices has been tested to
provide largely start value-independent results. The approach
and the quality of results obtained contributes to further improv-

ing design—oriented large signal modeling and associated MMIC
design quality.
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Parasitics | Average | % Std. Dev.
Cpg[fF] 5.16 15.48
Cpd[fF] 0.03 28.76
Rs[Q] 1.46 3.64
Rg[] 0.22 28.38
RA[Q] 0.20 057
Ls[pH] 18.30 0.98
Lg[pH] 17.90 131
Ld[pH] 16.87 144

Intrinsics | Average | % Std. Dev.
Ri[Q] 4.45 3.62
Rgd[Q] 15.51 0.93
7[ps] 0.89 1.02
Cds[fF] 23.07 0.11
Cygs[fF] 83.54 1.00
Cygd[fF] 19.60 0.13
Gm[mS] 23.64 021
Rds[kQ] 5.65 212

Tab. 1: Average values and standard deviations obtained
from 100 random initialisations chosenin the
rangeof 0.1 - X4 ...10- X 4.
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Fig. 5: S—parameter % residual error as a function of bias.
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Fig. 4: Gm versusVgs for Vids =0.3V. .. 4.8V step 0.3V and
Gds = 1/Rds versusVds for Vgs

=-1.2V...0.3V step 0.15V.

Fig. 6: Normalized measured and modelled S—parameters for
different bias situations, f =1-40 GHz,
SM: measured, SC: computed.
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